Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor
نویسندگان
چکیده
BACKGROUND It is challenging to achieve ultrasensitive and selective detection of waterborne pathogens at extremely low levels (i.e., single cell/mL) using conventional methods. Even with molecular methods such as ELISA or PCR, multi-enrichment steps are needed which are labor and cost intensive. In this study, we incorporated nano-dielectrophoretic microfluidic device with Surface enhanced Raman scattering (SERS) technique to build a novel portable biosensor for easy detection and characterization of Escherichia coli O157:H7 at high sensitivity level (single cell/mL). RESULTS A multiplexing dual recognition SERS scheme was developed to achieve one-step target detection without the need to separate target-bound probes from unbound ones. With three different SERS-tagged molecular probes targeting different epitopes of the same pathogen being deployed simultaneously, detection of pathogen targets was achieved at single cell level with sub-species specificity that has not been reported before in single-step pathogen detection. CONCLUSION The self-referencing protocol implements with a Nano-dielectrophoretic microfluidic device potentially can become an easy-to-use, field-deployable spectroscopic sensor for onsite detection of pathogenic microorganisms.
منابع مشابه
Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection.
We demonstrate a paper-based surface swab and lateral-flow dipstick that includes an inkjet-printed surface-enhanced Raman spectroscopy (SERS) substrate for analyte detection. Due to capillary-action wicking of cellulose, the paper dipstick enables extremely simple and pump-free loading of liquid samples into the detection device, and in addition provides inherent analyte concentration within t...
متن کاملCoating Of Silver Nanoparticles by Sputtering Method on Glass Substrates as Surface-Enhanced Raman Spectroscopy (SERS) Biosensor for Detection of Whey Protein
This article has no abstract.
متن کاملA multiplex self-referencing detection of pathogens using surface enhanced raman scattering nanoprobes with a nano-DEP microfluidic concentrator
متن کامل
Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels.
This work reports an optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Plasmonic nanoprobes with rich electromagnetic hot spots are selectively patterned along PDMS microfluidic channels by using a Scotch tape removal and oxygen plasma treatment, which also provide the permanent bonding between PDMS and a glass substrate. A silver film with an initial thi...
متن کاملMicrofluidic Biosensor Array with Integrated Poly(2,7-Carbazole)/Fullerene-Based Photodiodes for Rapid Multiplexed Detection of Pathogens
A multiplexed microfluidic biosensor made of poly(methylmethacrylate) (PMMA) was integrated into an array of organic blend heterojunction photodiodes (OPDs) for chemiluminescent detection of pathogens. Waterborne Escherichia coli O157:H7, Campylobacter jejuni and adenovirus were targeted in the PMMA chip, and detection of captured pathogens was conducted by poly(2,7-carbazole)/fullerene OPDs wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017